Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.06.23299623

ABSTRACT

Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified. These findings suggest that memory T-cell immunity to seasonal coronaviruses does not strongly influence the outcome of SARS-CoV-2 infection in unvaccinated individuals.


Subject(s)
COVID-19 , Pneumonia , Infections
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.01.486719

ABSTRACT

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in COVID-19 convalescents combining serological, cellular and monoclonal antibody explorations, revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell, demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


Subject(s)
COVID-19 , Ataxia
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.20249038

ABSTRACT

BackgroundThe systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, much less is known about the mucosal responses in the upper airways at the site of initial SARS-CoV-2 replication. Local antibody responses in the nasopharyngeal epithelium, that are likely to determine the course of infection, have not been analysed so far nor their correlation with antibody responses in serum. MethodsThe IgG and IgA antibody responses were analysed in the plasma as well as in nasopharyngeal swabs (NPS) from the first four COVID-19 patients confirmed by RT-qPCR in France. Two were pauci-symptomatic while two developed severe disease. Taking advantage of a comprehensive series of plasma and nasopharyngeal samples, we characterized their antibody profiles from the second week post symptoms onset, by using an in-house ELISA to detect anti-SARS-CoV-2 Nucleoprotein (N) IgG and IgA. ResultsAnti-N IgG and IgA antibodies were detected in the NPS of severe patients. Overall, the levels of IgA and IgG antibodies in plasma and NPS appeared specific to each patient. ConclusionsAnti-N IgG and IgA antibodies are detected in NPS, and their levels are related to antibody levels in plasma. The two patients with severe disease exhibited different antibody profiles that may reflect different disease outcome. For the pauci-symptomatic patients, one showed a low anti-N IgG and IgA response in the plasma only, while the other one did not exhibit overt serological response.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL